Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Behav Sci (Basel) ; 12(5)2022 May 13.
Article in English | MEDLINE | ID: covidwho-1875498

ABSTRACT

Adolescence is a prime developmental period to explore human-pet relationships, particularly given that teens are often relying less on their families, and more on other attachment figures such as peers and pets. However, most research on pet companionship is conducted with adults and young children. Moreover, lived experiences around having pets in households with adolescents are underexplored, particularly from parents' perspectives. This qualitative interview study of 31 parents/guardians in the Northeast U.S. explored perceptions of the benefits and challenges of having pets for their adolescent's well-being as well as how adolescents affected their pet's well-being. Our three main themes for perceived benefits of pets included social (e.g., reducing anxiety), physical (e.g., screen time companionship), and emotional (e.g., regulation of difficult emotions such as anger, loneliness). Challenges to adolescent well-being included such social topics as family tension around unevenly shared responsibilities, physical themes such as problematic animal behaviors, and emotional themes related to grieving the passing of pets. We offer a developmental systems approach to understanding pets within adolescent families, noting future directions for developing family interventions to improve pet-adolescent interactions given the demands of child and pet upbringing during adolescence.

2.
PLoS Pathog ; 17(12): e1010174, 2021 12.
Article in English | MEDLINE | ID: covidwho-1624813

ABSTRACT

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Subject(s)
Adaptation, Physiological/physiology , Host-Pathogen Interactions/physiology , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H3N8 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Animals , Genetic Fitness/physiology , Horses
3.
PLoS Biol ; 19(12): e3001065, 2021 12.
Article in English | MEDLINE | ID: covidwho-1594053

ABSTRACT

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Subject(s)
Epithelial Cells/immunology , Hot Temperature , Immunity, Innate/immunology , Interferons/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adolescent , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Male , Middle Aged , Models, Biological , RNA-Seq/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Tissue Culture Techniques , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
4.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1440797

ABSTRACT

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , COVID-19/genetics , COVID-19/physiopathology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , 5' Untranslated Regions , A549 Cells , Animals , COVID-19/enzymology , COVID-19/immunology , Chiroptera/genetics , Chiroptera/virology , Coronaviridae/enzymology , Coronaviridae/genetics , Coronaviridae/physiology , Endoribonucleases/metabolism , Humans , Interferons/immunology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Single Nucleotide , Protein Prenylation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Retroelements , SARS-CoV-2/genetics , Severity of Illness Index , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL